Preclinical pharmacology of KB408, an HSV-1-based gene therapy vector, for the treatment of alpha-1 antitrypsin deficiency Sara Artusi, Peipei Zhang, Mary Jane Duermeyer, Trevor Parry, and Suma Krishnan

Krystal Biotech, Inc, Pittsburgh, PA

Introduction

- Alpha-1 antitrypsin deficiency (AATD) is a rare autosomal co-dominant inherited genetic disorder resulting from mutations in the gene (SERPINA1) encoding alpha-1 antitrypsin (AAT), a secreted α1-glycoprotein whose principal substrate is neutrophil elastase in the lungs¹⁻³
- For the large majority of AATD patients, lung disease is of the greatest clinical importance⁴, as it often results in life threatening progressive pulmonary impairment and severe respiratory insufficiency⁵⁻⁶, underscoring the need for continued drug development efforts directed towards effective treatments targeting pulmonary AATD.
- To this end, Krystal Biotech, Inc. developed KB408, a replication-incompetent, non-integrating herpes simplex virus type 1 (HSV-1)-based gene therapy vector encoding two copies of full-length human SERPINA1, for the potential use in treating AATD lung disease.
- Objective: to determine (1) whether KB408 was capable of efficiently transducing clinically relevant primary human small airway epithelial cells (SAECs) in vitro and inducing production and secretion of full-length human AAT, and (2) if the vector was safe for, and amenable to, inhaled administration in immunocompetent animals, including in SERPINA1 knockout mice.

Materials and Methods

• Vector efficiency and molecular correction were assessed for KB408 in vitro and in vivo.

Table 1. Critical reagents

Material Description	Application	Source	
Recombinant human AAT (rhAAT)	Western Blot	Abcam	
AAT antibody	Western Blot	Abcam	
Actin	Western Blot	Lycor	
SERPINA1 knockout (KO) mice	In Vivo Dosing	The Jackson Laboratory	
AAT antibody	Immunofluorescence	ThermoFisher	
Anti-rabbit antibody	Immunofluorescence	Abcam	
AAT ELISA	ELISA	ALPCO	

Results: In Vitro

Figure 1. Clinically relevant primary airway cells efficiently targeted by KB408 to induce secretion of full-length AAT

- Vector transduction of primary human SAECs, assessed via qPCR analysis (Figure 1A)
- Dose-dependent human SERPINA1 transcript expression in transduced SAECs, via qRT-PCR analysis (Figure 1B)
- Detection of intracellular full-length AAT protein production in transduced airway cells via western blot (Figure 1C)
- Quantification of AAT protein secretion into the cell culture supernatant via ELISA (Figure 1D)

Conclusions

- KB408 can efficiently transduce clinically relevant human SAECs, promoting intracellular expression and subsequent secretion of full-length human AAT.
- The vector effectively transduces the airways of immunocompetent animals and directs expression of human AAT after inhalation without significant toxicity or systemic vector biodistribution.
- interstitium
- Taken together, these data provide strong support for the potential of inhaled KB408 as a novel gene therapy candidate for the treatment of AATD lung disease.

Results: *In Vivo* – Proof-of-Concept in Wild-Type Mice Treatment Animals Dose Route of Admin Vehicle C57BL/6 mice Low-Dose KB408 C57BL/6 mice (4.125E7 PFU) Intratracheal <u>Mid-Dose</u> KB408 C57BL/6 mice (1.65E8 PFU) High-Dose KB408 C57BL/6 mice (6.6E8 PFU)

PFU: plaque forming units

Figure 2. KB408 capably transduced the lungs of immunocompetent animals and expressed its cargo therein upon repeat dosing

• Detection of dose-dependent transduction (Figure 2A) and subsequence expression of the human transgene (Figure 2B) in lung tissue homogenates following intratracheal administration of KB408 by qPCR and qRT-PCR analyses, respectively Figure 3. Dose-dependent human AAT protein expression was observed in the lungs of immunocompetent mice without visible toxicity upon repeated exposure

Vehicle

• Representative immunofluorescence images of KB408- or vehicle-treated mouse lungs. DAPI was used to stain nuclei (Figure 3A)

Results: In Vivo – SERPINA1 Knock-Out Mice

Table 3. Experimental design for a single dose of KB408 in SERPINA1 knock-out (KO) mice

	Treatment	Animals	Dose	Route of Administration	Administration (Day)	Necropsy (Day)
	Vehicle	SERPINA1 KO (Serpina1 ^{em3Chmu})	-	Introtrophool Instillation	1	2
1 MOI 3	KB408	SERPINA1 KO (Serpina1 ^{em3Chmu})	3.3E8 PFU		I	2

• Following intratracheal administration in SERPINA1 knock-out mice, KB408 promoted robust expression of human AAT in lung homogenates, with protein also being detectable in the serum and BALFs, indicating trafficking of the effector through the pulmonary

Table 2. Experimental design for repeat-dosing of KB408 in healthy immunocom

Catalog No. ab91136 ab9400 926-42210 Strain: Serpina1em3Chmu PA5-16661

ab150080 30-6752

petent mice			
nistration	Administration (Days)	Necropsy (Days)	
stillation	1 & 3	4	

qPCR (A) and qRT-PCR (B) data is presented as the average ± SEM.

Representative hematoxylin and eosin (H&E)-stained lung tissue sections harvested from KB408- or vehicle-treated lungs (Figure 3B)

- homogenates of SERPINA1 KO mice following intratracheal administration of KB408.
- Whole blood, brain, heart, spleen, liver, kidney, ovary, bone marrow, and lymph node samples were all below the limit of detection for vector genome copies.

Figure 5. Human AAT protein expressed in the lungs following intratracheal administration of KB408 in SERPINA1 knock-out mice without apparent vector- or effector-mediated toxicity

the lung interstitium upon KB408 inhalation

References

1: De Serres et al. COPD. 2006 Aug;3(3):133-9; 2:Gooptu et al. Eur Respir J. 2009 Aug;34(2):475-88; 3: Greene et al. Nat Rev Dis Primers. 2016 Jul 28;2:16051; 4: Brode et al. CMAJ. 2012 Sep 4;184(12):1365-71; 5: Elliot et al. Am J Respir Cell Mol Biol. 1998 May;18(5):670-4.

Acknowledgements/Disclosures

These studies were funded by Krystal Biotech, Inc. We kindly thank Jennifer Patton for her contributions to the *in vivo* studies presented here. S. Artusi, M.J. Duermeyer, T. Parry, and S. Krishnan are current employees of Krystal Biotech, Inc. sartusi@krystalbio.com.

qPCR (A) and qRT-PCR (B) data is presented as the average ± SEM

• Vector transduction (Figure 4A) and human SERPINA1 transcript expression (Figure 4B) in lung tissue

average ± SEM. (Figure 5C)

Figure 6. Human AAT protein detected in the lung tissue (A), sera (B), and BALF (C) of SERPINA1 KO mice, suggesting protein expression in the lung epithelium and trafficking to both the lung surface and through